HARDWARE DEOBfuscATION USING SAT ATTACK

Branden Leong | branden.leong1@gmail.com
Arcadia High School | Class of 2022
USC Viterbi Department of Electrical and Computer Engineering | SHINE 2020

INTRODUCTION
Globalization of the modern economy has led to concerns about pirating, overproduction, and counterfeiting, especially for vendors of intellectual property (IP). To protect their IP from illegal and unauthorized manufacturing, a method for locking IP's has been proposed in recent years and is previously utilized in highly-classified systems.

Known as logic locking, this method integrates “keys” in the IP such that the IP will only behave as intended once the correct key combination is provided. This may be accomplished by inserting additional logic gates (for example, XOR and XNOR gates) that require one or more keys. Thus, the true functionality of the IP is hidden from the user while still accessible given the correct key.

However, logic locking contains inherent exploitable flaws. Efficient attacks have been developed, such as SAT attacks, sensitization attacks, and bypass attacks.

For future reference, an IP containing keys will be known as the encrypted circuit and the same circuit sans logic locking components will be known as the oracle. Hence, the encrypted circuit will only function as the oracle given the correct key.

METHODS
One major inherent flaw in traditional logic locking techniques is derived from the fact that logic locking fails to obfuscate the design of the circuit. All gate connections are still viewable by the user.

1. We take the netlist of the circuit and note all connections...
2. Then use TaoYin transformations to convert into something the SAT solver can read...
3. Then run it through the SAT solver...

IMPLEMENTATION

We implemented two different algorithms captured by the following pseudo-codes (methods of obtaining the desired result):

Pseudo-code #1 (P1):

Pseudo-code #2 (P2):

RESULTS

We created three versions of the code: 1) P1 works, but not time-efficient; 2) improved time-efficient part of the preprocessing; and 3) P2 implementation, aiming to reduce run-time further.

All three versions have been tested against the c632 and e880 circuits in the ISCAS-85 benchmark library with SarLock, a SAT attack-resilient encryption technique.

Figure 4: The average runtime for each of the three versions over 20 trials for (left) c632, and (right) e880.

For 6 key inputs, the second and third versions have about a 98% decrease in run-time.

FUTURE PLANS

Because of how similar the runtimes are for the second and third implementations, we can logically deduce that the preprocessing before and after the SAT solver runs is taking too long in the third implementation. We expect the SAT solver time to be significantly decreased hence we must work towards decreasing the preprocessing time.

We should further implement a method for solving for keys in sequential circuits. During the research program, only the combinational circuits have been solved, so we wish to expand our progress by solving sequential circuits as well.

Logic locking is not the only method for protecting IPs; there are many other methods that must be tested to identify vulnerabilities should we continue on the journey to discover an enigma of the future.

SKILLS LEARNED

- **GitHub** to store and organize both current code and previous revisions
- Creation and utilization of a Linux environment on a Windows machine
- Understanding of run-time complexity
- How to express Boolean circuits in DIMACS format
- Operation of MINISAT satisfiability solver
- Primitive and advanced logic-locking functions applied on combinational and sequential circuits

ACKNOWLEDGMENTS

I would like to express my deepest appreciation and gratitude to the following people, all of whom have made this research experience possible:

- To Professor Muzio for accepting me into his research team and the opportunity to engage in electrical engineering research...
- To Prof. G. Student Yinghua He for his endless encouragement, support, and invaluable teaching, and most of all for his patience in guiding me through obstacles...
- To Rachel Lah for going through this amazing experience with me...
- To Dr. Mills and the SHINE team for coordinating the program during especially difficult times and for cultivating a warm atmosphere for research...
- ...and most certainly my family for supporting me through this transformative journey.